

Introduction

Problem Statement

This project develops a micro-UAV system suited to flying through a doorway w/o full localization

Drawback	
Weight, cost, limited to outdoors	
Limited to one area, cost	
Weight, cost, precision	

Challenge: standard Visual-Inertial Navigation Systems (VINS) fail due to low resolution & IMU drift

Figure 1: Crazyflie platform (27g). Onboard inertial measurement unit (IMU) is on central control board, and 480x640 resolution camera mounted below

Methodology

Two methods developed for each of following tasks: (1) detecting doors in images, (2) flying through detected door. Methods validated on novel datasets/test flights. **Door Detection via Hough Transform**:

If no candidates, previous candidate is tracked **Door Detection via Convolutional Neural Network (CNN)**:

 $f(image) = door \ location, \ confidence$

Network formed of convolutional operations

- **PD Control on Door Detection** $E = Center \ Of \ Image - Center \ of \ Door \ in \ Image$
 - UAV control input = $K_p * E + K_D * \frac{aE}{dt}$
- **Control Recurrent Neural Network (RNN)**:

 $f(door \ location, IMU, time) = UAV \ control \ input$

Network of Gated Recurrent Units (memory cells - deal w/ velocities & past actions)

Indoor Micro-UAV Navigation with Limited Sensing **Dennis Melamed** Advisors: Prof. Volkan Isler (Computer Science) & Prof. Derya Aksaray (Aerospace Engineering)

Candidate closest to standard door aspect ratio is detection

Figure 2: a) Plywood door b) Instance Segmentation c) Hough Lines detected d) Tiny-YOLO detection

Hough Transform

- Many spurious lines due to lighting, noise, scene clutter. Suppression needed for accurate candidate selection
- Tuned to perform well on test Dataset 1 (plywood door, clean environment) (fig 2c), failed to generalize well to Dataset 2 (real doors, cluttered environment)
- Difficult to determine candidates when door is seen from an oblique angle, since aspect ratio changes

CNN

- Full segmentation (Figure 2b) attempted, deemed too slow for use
- CNN selected is Tiny-YOLO, a bounding box instance detector (fig 2d) [1]
- Trained on door images from ADE20K dataset [2]
- Generalized to and outperformed (time & accuracy) Hough method on both test datasets

Dataset 1 Timing plywood door, clean environment (fig 2a)	Hough Method	CNN Method	Dataset 2 Timing Real doors, cluttered environment	Hough Method	CNN Method
Mean sec/image	1.11	0.089	Mean sec/image	0.08	0.072
σ sec/image	1.99	0.024	σ sec/image	0.02	0.009

Accuracy Measurement

- Full bounding box comparison not done (only center of door (x, y) important for flight)
- Scale by true door area to weigh error more heavily if door is far away **lower accuracy** score is better

Goal:

Fly through door without external knowledge of UAV position

PD Control

- Able to successfully make it through door
- Uses simulation specific door detection
- Difficulties when door starts near edges of image – yields strong oscillations

RNN Control

- Simulated waypoint following algorithm flies Crazyflie through door for training data collection
- Network: small convolutional section for image, combined with other sensor data, followed by Gated Recurrent Units

Testing

- PD parameters tuned through test flights from zero location, RNN trained on flights from zero location
- 20 flights simulated from zero location, 20 flights from arbitrary location

	PD
	Control
Stable flight	Yes
Success rate	65%
from tuned	(13/20)
position	
Success rate	15%
from arbitrary	(3/20)
position	

Acknowledgments

Thanks to Professor Isler & Professor Aksaray for advising this project, the members of the RSN Lab for their advice, and Ryan Peterson for his help with motion capture systems

References

[1] Redmon, J., & Farhadi, A. (2017). Tiny yolo.

UNIVERSITY OF MINNESOTA Driven to Discover^s

Door Flight

References