
Introduction
Problem Statement
• This project develops a micro-UAV system suited to flying through a doorway 

w/o full localization 

• Challenge: standard Visual-Inertial Navigation Systems (VINS) fail due to low 
resolution & IMU drift

Methodology
Two methods developed for each of following tasks: (1) detecting doors in images, (2) 
flying through detected door. Methods validated on novel datasets/test flights. 
• Door Detection via Hough Transform: 

If no candidates, previous candidate is tracked 
• Door Detection via Convolutional Neural Network (CNN): 
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Network formed of convolutional operations
• PD Control on Door Detection
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• Control Recurrent Neural Network (RNN): 
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Network of Gated Recurrent Units (memory cells - deal w/ velocities & past actions)

External Localization Method Drawback
GPS Weight, cost, limited to outdoors
Motion Capture System Limited to one area, cost
Onboard sensor fusion Weight, cost, precision

Figure 1: Crazyflie platform (27g). Onboard inertial measurement unit (IMU) 
is on central control board, and 480x640 resolution camera mounted below
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Door Detection

Hough Transform
• Many spurious lines due to lighting, noise, scene clutter. Suppression needed for accurate 

candidate selection
• Tuned to perform well on test Dataset 1 (plywood door, clean environment) (fig 2c), 

failed to generalize well to Dataset 2 (real doors, cluttered environment)
• Difficult to determine candidates when door is seen from an oblique angle, since aspect 

ratio changes

CNN
• Full segmentation (Figure 2b) attempted, deemed too slow for use
• CNN selected is Tiny-YOLO, a bounding box instance detector (fig 2d) [1]
• Trained on door images from ADE20K dataset [2]
• Generalized to and outperformed (time & accuracy) Hough method on both test datasets

Accuracy Measurement
• Full bounding box comparison not done (only center of door (H, I) important for flight)
• Scale by true door area to weigh error more heavily if door is far away – lower accuracy 

score is better

Dataset 1 Timing
plywood door, clean 
environment (fig 2a)

Hough Method CNN Method

Mean sec/image 1.11 0.089
K sec/image 1.99 0.024

Dataset 2 Timing
Real doors, cluttered 
environment

Hough Method CNN Method

Mean sec/image 0.08 0.072
K sec/image 0.02 0.009
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Figure 2: 
a) Plywood door  b) Instance Segmentation 
c) Hough Lines detected d) Tiny-YOLO detection
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Fig 4: Recurrent Network Architecture

Goal:
Fly through door without external 
knowledge of UAV position

PD Control  
• Able to successfully make it through 

door
• Uses simulation specific door detection
• Difficulties when door starts near edges 

of image – yields strong oscillations

RNN Control
• Simulated waypoint following algorithm 

flies Crazyflie through door for training 
data collection

• Network: small convolutional section for 
image, combined with other sensor 
data, followed by Gated Recurrent Units 

Testing
• PD parameters tuned through test 

flights from zero location, RNN trained 
on flights from zero location

• 20 flights simulated from zero location, 
20 flights from arbitrary location


