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Abstract

The usage of a small unmanned aerial vehicle UAV with minimal sensing abilities

to navigate complex indoor environments outside a motion capture system has not

been well explored. This work develops a system to fly out the door of a room from

an arbitrary initial location using a micro-UAV with low-accuracy sensors. The sens-

ing abilities are limited by the payload of the UAV to a low-resolution camera and a

low-accuracy IMU. The framework consists of two interacting components: door de-

tection (by a simple Hough transform procedure or a convolutional neural network)

and flight control (via proportional-derivative control or a recurrent neural network).

The convolutional neural network method for door detection shows significant advan-

tages over the Hough transform-based method in speed and accuracy. The network

outperforms the Hough method on both a training dataset and a novel dataset. For

flight control, a new payload system for the UAV was built allowing for safe flights

and data collection. A ground-truth flight algorithm which used a motion capture

system to fly through a door was set up and used for training data collection. The

proportional-derivative controller shows success in flying through the door from a fixed

location after tuning. Accuracy decreases if the UAV is set in an arbitrary location

and the controller is not re-tuned for that location. The recurrent neural network was

able to fly the UAV stably but flew in loops without passing through the door. Flying

through doors using micro-UAVs on the scale of tens of grams is feasible without an

external navigation system by using a convolutional neural network to detect a door

and a simple proportional-derivative controller to control flight.
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1 Non-Technical Summary

Drones, or Unmanned Aerial Vehicles (UAVs) are a class of robots able to move through

the air, often using four propellers giving the name ‘quadcopters’. Navigating the world

is challenging for UAVs, as they do not have the same sensing and processing abilities as

humans do. A key task for a UAV is determining where it is in the world in order to navigate

to a new, desired location. Many solutions exist for this, including familiar ones such as GPS

devices or systems that attempt to replicate human vision in order to track where the robot

has moved. Current solutions have drawbacks, including cost, weight, and accuracy.

Weight and accuracy become significant difficulties as the size of UAVs gets smaller.

Smaller UAVs are useful for tasks where a larger UAV may be unable to access the desired

space due to its size but where flying through the space is still the best method of completing

the tasks. Such tasks might include sewage pipe inspection, agricultural data collection in

thick vegetation, and indoor security monitoring.

In order to complete these tasks, traditionally the UAV has needed to determine where it

is in the world, using the previously mentioned localization systems like GPS. This is feasible

for larger systems, but very small UAVs cannot lift sensors accurate enough to localize
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themselves well. This project develops a system where low-quality, lightweight sensors are

used on a micro-UAV (27 gram weight) to complete a task which would normally require

accurate localization: flying through a door.

To achieve this, two main components are developed. The first is a way to locate where

a door is in the low-resolution images available from the micro-UAV’s onboard camera.

Two different methods of locating the door are created, the first based on more traditional

computer vision techniques, the other based on convolutional neural networks, a promising

area of network-based image processing that tries to mimic how the human brain processes

information. The second major component is a flight controller, which actually tells the

micro-UAV where to go based on the location of the door in the current image it sees.

Again, two different methods are explored to complete this task. A proportional-derivative

controller is a simple system which uses standard control techniques to set the UAV on a

course where it will fly through the door. A recurrent neural network uses a network of nodes,

again structured to mimic how a brain might deal with information, to get the UAV to fly

through the door based on sensor data input. The network learns to do this by being shown

hundreds of instances of successful flights and attempts to mimic them. The recurrent neural

network also takes advantage of a type of node with memory, which is able to remember

past inputs in order to deal with time-dependent quantities like velocities.

Testing of each implemented method yielded the following results: The convolutional

neural network is more accurate and faster than the method based on traditional computer

vision techniques. The proportional-derivative controller was more successful at flying the

UAV through the door than the recurrent neural network. Neither flight controller was able

to achieve a consistently successful flight through the door, but the proportional-derivative

controller was able to fly through the door in a small percentage of flights from arbitrary

locations.
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2 Introduction

Most current work in the field of autonomous unmanned aerial vehicles (UAVs) uses well-

known localization systems such as GPS, motion capture systems, or onboard sensor fusion to

determine the UAV’s position and orientation. With this information, control and navigation

of the UAV can be achieved through standard algorithms. While these systems are reasonable

in certain situations, they each have key drawbacks. GPS devices are heavy and can be

inaccurate by several meters depending on the location and model of GPS. Motion capture

systems are expensive to install and only allow localization within a small area. Sensor fusion

on-board the UAV runs into the same problems as GPS, with accuracy often being relatively

poor depending on the environment and sensors used. Weight is an additional concern, as

cameras and others sensors sufficient to give good sensor fusion can often weigh more than

the payload of the UAV. Due to these issues, it is desirable to find a way a lightweight

UAV could move through the world without relying on the above systems to give it its

precise location. The applications of such a micro-UAV might include plumbing inspection,

agricultural inspection within trees, and indoor security monitoring. This project develops

such a platform and creates software for a first step in the complete ability to navigate

without the above systems: flying through a doorway.

Flying through a door is a key task in navigating indoors where a doorway is the most

constrained space for a UAV to fly through and thus the most likely place for a crash.

The platform selected for this project is a Crazyflie micro-UAV: a low-cost, durable, and

open source platform weighing 27 grams. The sensing payload onboard includes an inertial

measurement unit (IMU) and a lightweight camera designed for first-person view (FPV)

drone racing. Neither of these sensors are very high-quality due to their small size and

low cost. While the project task seems simple to a human, a UAV without the ability to

completely localize itself must go through several software steps in order to safely fly through

the door.

Detecting a door is the first step. This requires running either a Hough transform-based
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method or a convolutional neural network on the camera feed coming from the UAV. These

methods take in the camera image and output a set of coordinates in the image plane

marking where the door is located. Once the door has been localized, the UAV must take

off and respond to roll, pitch, yaw, and thrust set points generated by a flight controller.

This flight controller must determine which direction to fly in order to make it through the

door. Flight control is implemented both as a proportional-derivative (PD) controller and a

recurrent neural network (RNN). The PD controller takes as input the location of the door

in the image and calculates its distance from the center of the image (directly forward for the

UAV). This distance is used as an error term to align the UAV with a path that will lead it

through the door. The recurrent neural network approach takes as input the detected door

location and other sensor information. Using recurrent layers which are able to remember

previous inputs, the network learns to generate the appropriate control inputs for the UAV

to pass through the door by mimicking training data. The feasibility of the system and

methods described provides a basis for future development of very small-scale systems with

limited sensing to complete useful tasks in the real world.

3 Background

Previous work in this area falls into a few broad categories. Detection of doors in camera

images has been studied in multiple works and is a key initial step in flying through a

door. Work in this category includes the detection of elevator doors by JunYoung and

Lee [1] using stereo vision. While the current project will not use stereo vision, the corner

detection JunYoung and Lee propose is used in later works. A more relevant publication is

Muñoz-Salinaz et al.[10], which uses fuzzy logic to successfully detect doors using the edges

present in an image including when the door is not completely visible. Tian [17] attempts

to expand on this concept and uses the detection of frame corners and edges to indicate a

door, along with the heuristic that doors tend to be inset in the wall while objects similar
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to doors such as wardrobes tend to extend out from wall. While this is useful for higher

resolution cameras, the low accuracy of the camera used in this project makes it unlikely

that enough corners and edges are extractable to determine if something is inset or standing

out. Llopart, Ravn, and Andersen[9] use a convolutional neural network to detect doors and

cabinets. The network is trained to place a bounding box around any doors in a camera’s

image. Redmond and Ali [12] develop a fast object detection network called You Only Look

Once (YOLO), which places a bounding box around any object class instance it has been

trained on. The results of the YOLO work show success and a possible path for development.

However, they are unlikely to translate directly to the detection task in this project due to

the high resolution and stationary nature of the camera in their work. The low resolution,

noisy images generated by the Crazyflie onboard camera require some innovation over the

current state-of-the-art detection algorithms. The methods developed here take advantage

of problem structure knowledge, such as the fact that the door is unlikely to jump very far

from image to image or that doors tend to have certain aspect ratios, in order to improve

the accuracy of door detections.

Indoor navigation of UAVs is a well-researched field. Most research focuses on either

UAVs big enough to hold higher-accuracy sensors or systems where the UAV is localized

using motion capture setups such as VICON systems. Sanket et al. [15] makes use of a

UAV over ten times the weight of the Crazyflie to detect gaps and fly through them using

Temporally Stacked Spatial Parallax, a gap detection method, and a high resolution camera-

based approach. Their method is very successful for irregular gaps and proposes the use of

a “safe point” that is chosen as the location to fly through the gap, calculated to ensure

that the UAV will fit through the gap. Riviere, Manecy, and Viollete[13] use a micro-UAV

shaped like an ‘H’ which is able to fold up to form a narrow body more able to fit through

small gaps. A motion capture system is used to localize and control the UAV in this case.

Horvath, Zentai, and Jenak[6] attempt to solve the problem of indoor navigation using a laser

scanner capable of generating a three-dimensional point cloud combined with camera images.
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Their results are good for large spaces and varied environments but rely on the use of heavy

sensors. Barrows[2] uses new, extremely small-scale stereo optical flow sensors to detect

objects and maintain position without an external localization system. The hardware used

is not available commercially, and the work does not indicate that these sensors can be used

to actually navigate as opposed to simply hold position or avoid obstacles. Kelchtermans and

Tuyelaars [8] seek to solve a similar problem to this project using a recurrent neural network.

They show promising results when using a network consisting of Generalized Rectified Units,

developed by Chung et. al. [3]. However, they choose to control the UAV on a very different

level than this project. Their work assumes the ability to control the location and orientation

of the UAV directly. The Crazyflie only allows control of the orientation (degrees roll &

pitch), thrust level, and yaw-rate (degrees/second). Overall, the control systems developed

in the literature are based on more powerful sensing packages or more high-level control than

is available for the Crazyflie.

4 Project Description & Methodology

4.1 Hardware and Pre-existing Software

The UAV selected for this project is the Crazyflie micro-UAV, shown in Figure 2. Developed

by Seeed Studios, it has a built-in IMU and a 15 gram payload. The developed payload

consists of an FPV camera weighing 5.6 grams manufactured by RunCam, shown in Figure

3. This device has a global shutter which negates the distortion caused by rolling shutter

cameras. Under rapid motion, rolling shutter cameras produce very distorted images because

they scan line by line. The top of the image is captured at a different time and location from

the bottom, producing undesirable smudging of objects in the image. The global shutter

avoids this effect. The rest of the payload is made up of an analog video transmitter and a

non-stock battery to power the camera, transmitter, and UAV. The weight distribution of

the payload caused flight instability during initial test flights in many configurations. A high
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Figure 1: Newly developed UAV payload

center of gravity caused the UAV to gather momentum from small perturbations during level

flight and flip over. A new payload system (Figure 1) has been created. The design places

the camera in a protected enclosure below the main UAV body. The stock battery has also

been replaced with a lighter battery of similar capacity and wiring harness modified to allow

both the UAV and camera/transmitter combination to run from the same battery. These

changes have resulted in a configuration that meets the UAV’s takeoff weight requirements

and can fly to waypoints in a motion capture system.

In order to provide ground truth to test against, a motion capture system developed by

Vicon is used. By placing lightweight plastic balls in unique configurations on the UAV, the

system tracks the full three-dimensional poses of the UAV to an extremely high degree of

precision using many cameras. The UAV communicates with the ground station (a basic

laptop) through two radio links: a two-way link for UAV commands and basic sensor data

streams and a separate link for camera image data to reduce latency on both links.

In order to control the UAV, the Robotic Operating System (ROS) is used. ROS allows

communication between running processes creating greater modularity in code. Processes

become ROS nodes which each can handle a different aspect of robotic control. A node

for interacting with the Crazyflie, called crazyflie_ros[5], exists and implements several

important features. It allows complete waypoint navigation of the UAV based on PID loops

when used with a motion capture system to localize the UAV and generally handles much
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Figure 2: The Crazyflie micro-UAV
Source: https://www.bitcraze.io/crazyflie-2/

Figure 3: The RunCam Micro Swift Camera
Source: https://shop.runcam.com/runcam-micro-swift/

of the low level UAV control. Without a motion capture system, the node uses the onboard

IMU and motor speeds to respond to pitch, roll, yaw, and thrust level commands from other

ROS nodes. This node has been tested and functions well in both waypoint and low-level

command regimes.

A software-in-the-loop (SITL) simulation of the task environment has also been set up in

the Gazebo robotics simulator based on sim_cf[18], a firmware simulator for the Crazyflie.

Gazebo outputs the same information as the VICON system, if needed, allowing the simu-

lation to closely mimic the control structure of the real world problem. A room with a door

has been added to the simulation (Figure 4), along with a UAV matching the characteristics

of the Crazyflie. The ROS interface provided by Gazebo and sim_cf is used to send com-

mands in a format identical to what crazyflie_ros expects and outputs IMU and camera

data in the same format as crazyflie_ros does as well. In order to replicate the real-life

environment more precisely, the IMU data generated by Gazebo has artificial noise added to

it, and the camera similarly has noise added and is lowered in resolution. Both data streams
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Figure 4: Simulated Crazyflie Environment

have delays associated with them as well in order to mimic the latency of the data links in

real life.

The camera attached to the UAV is forward-facing with the lens pointing out along the

UAV’s x-axis. The camera-UAV transform has been calibrated for more precise measure-

ments due to the impossibility of perfect camera mounting by a human. Given the assump-

tion of the IMU as the “center” of the UAV, which for the Crazyflie is sufficiently close to

true, the motion of the camera and the IMU can be correlated to determine how they are

related spatially. Correlation has been done with Kalibr[4], a calibration toolbox developed

by ETH Zurich. The camera itself has also been calibrated using the same package. The

image_undistort [16] node, also from ETH Zurich, has been set up to perform undistortion

of the images coming from the UAV in real time using the performed calibration.
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4.2 Image-Based Door Detection

Software was written which is able to determine where in the UAV’s camera image it thinks

a door is visible. This software takes an image as input and outputs the (x, y) coordinates it

considers to be the middle of the door. Unlike other works, we focus here on getting accurate

predictions of the door center, not of a bounding box around the door. This is because the

most relevant piece of information to fly through a door is where the center of the door is

located. Where the rest of the doorframe is located is not hugely important when the tiny

UAV is most likely able to fly through the door as long as it flies through the center. The

door must be correctly identified with a high success rate in order to make the entire work

successful. It must perform this correct identification in many environments, as the door will

not always be placed directly in front of the UAV with a clear distinction between the door

and surrounding wall. The door might appear very different due to the UAV’s perspective

and could be only partially visible during some stages of the UAV’s flight, such as when it

approaches very close to the door. Door detection was achieved in multiple ways: through a

method relying on the Hough transform to find doorframe edges in the image, and through

a convolutional neural network.

4.2.1 Hough Transform-Based Method

In the Hough-based method the camera image, once received, is converted to grayscale.

After bilateral filtering, the edges in the x and y directions of the image are detected using

a Canny edge detector. These edges are then thresholded to select only the strongest edges

which might be the doorframe. The edges are then converted into the Hough space. To do

this, each pixel in the image has several lines associated with it, specifically ones which are

firstly perpendicular to rays leaving the image origin and secondly pass through the pixel.

A “vote” for these associated lines is recorded. The lines with a number of votes above a

threshold will be selected as lines in the image.

Significant filtering of the resulting lines is done to reduce the effects of image noise and
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multiple detections of the same line. The amount of filtering and line suppression is a key

tunable parameter that strongly affects the performance of the algorithm. After suppression,

lines which are relatively parallel (within a small angle of each other) are grouped together

using a k-means clustering. This results in two groups of lines, one going vertically and the

other horizontally. The intersection point of the lines within each group is then calculated

and treated as a vanishing point of the image. Since we expect there to be a door in the

image this assumption of two vanishing points should hold (one formed by the uprights of the

door and the other formed by the crossbar/floor). The vanishing points are used to construct

a vanishing line which is used to rectify the image to be fronto-parallel to the camera. The

fronto-parallel view is a transformation of the image, so it appears to be taken with the

camera on the normal of the plane the door lies in. The door should have a consistent aspect

ratio in this view, but some variation does occur. The same transform is used on the detected

sets of lines. Rectangles in the transformed set of lines are then generated by grouping sets

of parallel/perpendicular lines, and the largest that matches the standard door aspect ratio

is selected as the door. The center of this rectangle is output as the result (after inverse

transforming it back into the original view).

Due to noise and motion blur, reasonable vanishing points cannot always be determined.

Since the previously described sequence depends on the points to rectify the image and

determine the door rectangle, a tracker is introduced to allow a reasonable door center to be

output when the image could not be rectified. A Median Flow tracker [7] was selected for its

high-speed yet accurate performance on image streams where the object might be occluded

or changing scale. This tracker is re-initialized whenever an image is able to be rectified,

and tracks the pixels in the last determined door rectangle otherwise. The Hough Transform

approach suffers from the fact that this entire process is lengthy and possibly slow, meaning

it struggles to run in real time. Additionally, when the UAV moves very quickly, the tracker

is unable to keep up with the door moving so fast in the image and can lose tracking in this

way. If a full view of the door is not seen for a little while the tracker is also not re-initialized
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Figure 5: Result of U-Net Segmentation (door pixels are red)

and loses accuracy over time.

4.2.2 Convolutional Neural Network Method

The second door detection method uses a convolutional neural network (CNN) to determine

the center of the door in the image. Several architectures were explored to find the one

best suited for this task. The ADE20K scene dataset[19] was parsed for images of doors,

and those images were manually annotated with bounding boxes on the doors to generate

the training and validation datasets. Initially, full segmentation of the door was attempted

using the U-Net architecture [14]. While this was moderately successful (Figure 5), it took

several seconds to process per image on the ground station laptop which was far too slow

for real-time control of the UAV.

A custom architecture was also developed for this task. Using the image as input, it

passes the image through several convolutional layers (each of which is followed by a max-

pooling operation), after which the last layer is fed through a fully-connected layer with two

outputs: the x and y coordinates of the door center. This architecture (as seen in Figure 6)
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was chosen due to its small size since it was to run on the UAV ground-station which has

limited resources. The number of convolutions learned at each level is much smaller than in

related networks such as in [9]: just 8, then 16, then 32. This also speeds processing of each

image. This network was unable to learn to detect the center of a door consistently.

Tiny-YOLO [12] was selected as a possible architecture due to its small size but high

accuracy instance detection results. A standard implementation of the algorithm [11] was

modified for detecting doors. After training, it was noted that when an image of a door was

taken from a relatively fronto-parallel point, the network would often detect each vertical

frame piece of the door as a separate door. This is possibly due to the presence in the training

set of images of doors at very oblique angles, making them look like only the upright portion.

In order to rectify this, the YOLO loss function (Equation 1) was modified by re-weighting

each of the terms. During algorithm runtime, each image is divided into a 7x7 grid, and

detection is performed in each grid cell using standard anchor boxes. The loss function

computes the sum over each grid cell of the accuracies of detections in grid cell i. If there is

a detection (1), the x, y location of the detection, the width and height (w, h) of the detection,

and the class confidence (pi(c)) are compared to their ground truth values, and the sum of

these comparisons is used as the accuracy of the detection. By weighting the width term to

be more significant, the network learned to be more accurate with the width of detections at

the cost of slightly lower accuracy in the other metrics. The lower accuracy is acceptable as

the width of the bounding box is key to the center of the box being correctly placed over the

center of the door. Re-weighting yielded significantly better results like in Figure 7, and the

trained Tiny-YOLO network is used as the representative of convolutional neural network

techniques for comparison with the Hough method. The final output of the standard YOLO

network is a set of possible bounding boxes. To convert these to a single door center, the

highest confidence detection is selected and the center of the predicted bounding box used

as the predicted door center. If no high confidence detections are returned, a Median Flow
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Figure 6: Sample door detection network architecture

Figure 7: Sample YOLO output

tracker tracks the pixels in the previous detection.
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4.2.3 Comparison and Results

The error of a detection can be calculated by the Euclidean distance from the detection

(x, y)predicted to the ground truth center of the door (x, y)groundtruth. However, this does not

take into account the fact that an error of ε is far more significant when the width of the

doorframe in the image is approximately ε than if the width is >> ε. To take the doorframe

size into account, scaled accuracy (closer to zero is better) is defined as:

ScaledAccuracy =

√
(xpredicted − xgroundtruth)2 + (ypredicted − ygroundtruth)2

TrueDoorArea
(2)

In order to calculate the scaled accuracy and compare the different methods, two test
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videos were taken of doors with the UAV’s camera. The first dataset consisted of a fake

plywood door on an uncluttered background. Dataset 1 was intended to be an easy detection

task due to the simplicity of the environment. The second dataset contained multiple real

doors in a cluttered environment to see how well each method generalizes to a harder case.

Each video was hand-annotated with the correct location of the door in each frame.

The detection results of each method were compared frame by frame with the annotated

ground truth and the scaled accuracy computed for each frame in both datasets. Figure 8

shows a histogram of frames with specific scaled accuracy scores. Overall, the CNN method

outperforms the Hough method in both datasets, with the center of the scaled accuracy score

distribution lower for the CNN method. An artifact of Dataset 2 is seen in the accuracy

scores for the Hough method. The Hough method often failed entirely to detect or track

anything in Dataset 2. The default detection for this method, if everything else fails, is

to predict the center of the image as the door. Dataset 2 sweeps past the centers of the

doors fairly often, meaning that at least some number of detections received very low scaled

accuracy scores. These falsely accurate detections lead to the tall column of low scaled

accuracy scores followed by a big drop seen by the Hough method on Dataset 2.

In addition to error rate, the speed of the method is a key factor. The UAV provides

images at about 30 frames per second (fps), and previous experience suggests that a control

loop for the UAV must run at at least 10 Hz. The best method must thus also be able

to run ideally at faster than 10 Hz, in order to process each frame and give some time for

the control loop code to run so it can achieve 10 Hz. The timing results for both methods

are shown in Tables 1 and 2 as the average time to return a detection. The CNN again

outperforms the Hough method and is far more consistent (lower standard deviation across

all timings). A similar artifact is seen in these results as before, where it seems as though the

Hough method performs much better on Dataset 2 over Dataset 1. This is again because the

method failed to detect anything. With very few lines detected, the method is not able to

rectify the image and compute a prediction, so it just returns the default prediction early and
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(a) Dataset 1 (b) Dataset 2

Figure 8: Scaled accuracy of Hough and CNN methods on two datasets

quickly. Something somewhat similar happened to the CNN on Dataset 2 since much fewer

detections were returned for each image. This meant that the post-processing of removing

low confidence detections occurred more quickly. In addition, more frames were tracked as

opposed to detected by the CNN method in Dataset 2, meaning that the slow action of

re-initializing the tracker had to be done less often.

Hough Method Convolutional Neural Network

Mean sec/image 1.11 0.89

Std. dev. sec/image 1.99 0.024

Table 1: Timing Results Dataset 1

Hough Method Convolutional Neural Network

Mean sec/image 0.08 0.072

Std. dev. sec/image 0.02 0.009

Table 2: Timing Results Dataset 2
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Overall, it appears the CNN-based method for detecting a door in an image is more

successful, consistent, and faster than the Hough method. Depending on the specific dataset,

it could meet the 10 Hz requirement and simply needs a more powerful ground station to

run more quickly. A possible failing of the Hough method is its high number of tunable

parameters. The suppression factor for detected lines, the threshold of pixels for the Hough

transform to consider something a line, the aspect ratio range candidates must fall into,

and more are all tunable parameters and affect the performance of the Hough method on a

specific dataset. The Hough method was tuned on Dataset 1 and thus performed somewhat

better than on Dataset 2, indicating the method’s difficulty in generalizing.

4.3 Independent Flight

The final portion of this work removes the motion capture system from the equation, requir-

ing the UAV to fly without outside knowledge of its orientation and location. In place of

the motion capture system, the onboard IMU and camera are used to both keep the UAV

stable and provide information about how the UAV is currently flying. A series of pitch, roll,

yaw, and thrust commands are generated constantly by the selected control algorithm. Two

different systems were developed and tested to see their effectiveness at successfully flying

the UAV through the door. The first is a classical proportional-derivative (PD) controller,

with the error being the difference between the predicted center of the door and the UAV’s

heading. The second is a recurrent neural network (RNN) which uses the IMU output, the

camera image, and the detected center of the door as input to output a stream of commands

after having been trained to mimic test flights.

4.3.1 PD Controller

The first approach uses a fairly standard PD controller to minimize the error in the UAV’s

heading throughout a flight. Given the assumption that the UAV is able to see the door,

setting the desired pitch of the UAV to a constant value causes the UAV to move forward,
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getting closer to the door plane. In order to guarantee that the UAV makes it through,

instead of just getting closer to the wall the door is built into, the roll of the UAV (controls

left/right movement) is controlled by the image x-axis distance between the predicted door

center and the center of the image. Since the camera points straight out from the front of

the UAV, minimizing this distance aligns the UAV with a path that leads through the center

of the door, causing the constant pitch to carry the UAV through. Thrust (i.e. height of the

UAV) is controlled similarly: the distance along the image y-axis between the image center

and the predicted door center needs to be minimized to make sure the UAV does not hit the

ground or the wall above the door.

In order to minimize these errors, PD control sets the control signal affecting the error

to a scaled version of the error (proportional) added to a scaled version of the derivative of

the error over time (derivative):

Command = Kp ∗ Error +Kd ∗
dError

dt
(3)

Proportional control alone led to oscillations around the desired zero error as the method

tried to correct, so Kd is tuned to cause the UAV to slow down as it approaches zero error,

acting like a spring damper. Equation 3 was implemented for both thrust and roll. Kp

and Kd along with the static pitch angle were tuned using test flights from a selected ‘zero’

location until the UAV made it through the door with minimal oscillation.

4.3.2 Recurrent Neural Network

The second approach uses a recurrent neural network (RNN) trained to navigate through

the door. An RNN was selected for this task since it has memory, allowing it to handle time

dependent quantities like velocities and momentums during flight. Using the motion capture-

based waypoint navigation algorithm in crazflie_ros, the UAV was flown repeatedly in

simulation from the zero location previously mentioned through the door. The RNN trained
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PD Control RNN Control
Stable Flight Yes Yes
Success rate from zero location 65% (13/20) Loops w/o finding door
Success rate from arbitrary location 25% (5/20) Loops w/o finding door

Table 3: Test Flight Success Statistics

based on the IMU, camera, and control data generated during these flights. The camera,

IMU, door detection, and time are used as inputs to the network, and the network learns

to mimic the control data the waypoint navigation algorithm generated at that point. The

architecture created for this task involved a small convolutional section to process the image

data, which was then flattened and fed alongside the other sensor data to the rest of the

network. The rest of the network consisted of several fully connected layers, several Gated

Recurrent Unit layers, and a final fully connected layer to generate the actual control outputs.

Input and output data was normalized to be zero mean, unit standard deviation to speed

training. The normalization factors were saved and used to denormalize the network output

at testing time. The full network structure that led to the lowest training error is seen in

Figure 9.

4.3.3 Comparison and Results

In order to compare the two methods, each was set up to control the UAV through 40 total

test flights in simulation. 20 of these flights were done from the zero location where the PD

controller was tuned and the RNN training data was collected from. 20 of these flights were

started from random locations in the simulated room, taken from a uniform distribution over

the area of the room. Table 3 lists some characteristics of these flights.

A successful flight is defined as making it through the door without bumping/crashing

into walls or the edges of the doorframe (Figures 10,11). Table 3 shows the PD controller

is the obviously more successful of the two flight controllers. While both were able to make

the UAV fly stably (not flip over, crash into the floor, etc), the RNN controller did not

show intention of moving towards the door. The stable flight indicates that the network
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Figure 9: Recurrent Neural Network Structure
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Figure 10: Successful Flight Path Viewed from Side

Figure 11: Successful Flight Path Viewed From Top

did learn the bounds of reasonable control inputs to the UAV but did not learn the higher

level task. It is possible this is due to a noisy dataset; the ground truth waypoint navigation

algorithm, while very consistent in getting the UAV through the door often responds to

similar perturbations slightly differently each time since the UAV is a complex system. The

network was unable to generalize these different reactions and was thus unable to learn to

control the UAV to complete its task. The PD controller, on the other hand, was more

successful. From the location it was tuned from, it was able to get through the door the

majority of the time. From an arbitrary location, the success rate dropped significantly.

Additional tuning did not particularly help, yielding unbounded oscillations and crashes

into the walls next to the doorframe. While not necessarily the most likely outcome, the PD

controller is able to occasionally get the UAV through the door safely.

In general, neither method was very successful at flying the UAV from an arbitrary

location in a room through the door. However, the PD controller’s limited successes indicate
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that there is enough information available to a controller from just the detection and the

IMU data to complete the task. Thus, a more complex controller like one that models the

Crazyflie’s dynamics or a neural network with a different structure or type of layer could

possibly learn the function needed to consistently fly the UAV through the door.

5 Conclusion

In conclusion, this project explores the applicability of various techniques and approaches to

indoor navigation by very small UAVs. To do this, a specific problem is defined: navigating

from an arbitrary initial position through a doorway. The sensing package defined is pur-

posely limited to low-cost, low-quality, and relatively high-latency sensors on an extremely

small platform in order to explore how navigation and motion might be controlled in sensor-

limited environments. To this end, a Crazyflie micro-UAV with a low-resolution camera is

selected as the platform for experiments. To complete the task, several discrete pieces of

software were written and connected through the Robotic Operating System.

The first is a door-detection algorithm. Several options for this algorithm were explored

including a Hough transform-based algorithm and a convolutional neural network. The

network proved to be the more successful of the two methods in both accuracy and speed

on novel datasets collected with the real UAV camera.

Next, a way to navigate through the door without any external localization systems was

written. Several options for flight control were developed and tested against one another,

including a classical PD controller and a recurrent neural network. A full software-in-the-

loop simulation was set up to mimic the real flight of the UAV in order to test the flight

controllers. The PD controller proved to be moderately successful and able to fly the UAV

through the door from select locations. The recurrent neural network was able to stabilize

the UAV but was unable to learn the high level task of getting to the door.

These results form a basis for further exploration of complex tasks using very small plat-
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forms with limited sensing. Task-specific as opposed to general solutions may be necessary

due to these constraints, and certain assumptions may need to be made. However, given

some problem-specific knowledge, task controllers can be devised to yield results even under

severe limitations.
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